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By using the mathematical formalism of absolute and convective instabilities, we
study in this work the nature of unstable three-dimensional localized disturbances
at the onset of convection in a flow in a saturated homogeneous porous medium
with inclined temperature gradient and vertical throughflow. It is shown that for
marginally supercritical values of the vertical Rayleigh number Rv the destabilization
has the character of absolute instability in all the cases in which the horizontal
Rayleigh number Rh is zero or the Péclet number Qv is zero. In all the cases in which
Rh and Qv are both different from zero, at the onset of convection the instability
is convective. In the latter cases, the growing emerging disturbance has locally the
structure of a non-oscillatory longitudinal roll, and its group velocity points in the
direction opposite the direction of the applied horizontal temperature gradient, i.e.
parallel to the axis of the roll. The speed of propagation of the unstable wavepacket
increases with Qv and generally increases with Rh.
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1. Introduction
The question of the onset of convection in a porous medium with inclined

temperature gradient has received considerable attention in the literature owing
to the numerous environmental, geophysical and industrial applications (for detailed
reviews, see Bear 1988; Nield & Bejan 2006; Straughan 2004b). Since the publication
of the seminal work of Weber (1974) a large number of papers were published
that dealt with the natural and forced convection in a horizontal porous layer with
inclined temperature gradient. In many studies of convection in a porous medium, the
medium is modelled as an extended horizontal saturated porous layer in which the
flow motion is induced by either the horizontal or the vertical or inclined temperature
and/or salinity gradients, including the Soret effect (see for example Nield 1991,
1994; Nield, Manole & Lage 1993; Straughan & Walker 1996; Bahloul, Boutana &
Vasseur 2003; Straughan 2004a; Delache, Ouarzazi & Combarnous 2007; Delache
& Ouarzazi 2008; Narayana, Murthy & Gorla 2008; Ouarzazi et al. 2008 and the
references therein). The extended-layer model is employed to facilitate the analysis
and, in particular, to make possible the application of analytic treatments such as
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the treatment of a single monochromatic wave and the stability treatment by using
a Fourier transform in space. The model is used based on the assumption that the
emergence and evolution of convection rolls of finite diameter in a porous layer of
finite horizontal extent can be well modelled in an extended layer provided that the
finite horizontal extent of the porous layer is much greater than the diameter of the
convection rolls.

It was shown by Nield (1990) and Qiao & Kaloni (1997) that a mean horizontal
mass flow superimposed on a Hadley circulation, driven by the horizontal component
of an inclined thermal gradient, influences considerably the flow dynamics in a porous
layer. The circulation is named after George Hadley, an English meteorologist of the
18th century, who first described an atmospheric flow induced by the horizontal
component of an inclined temperature gradient in his study of the cause of the
trade winds (see Persson 2006 for a description). Since the Hadley circulation in the
central portion of the flow is approximately independent of horizontal position, in
this portion it can be modelled as a uniform flow. The influence on the onset of
convection of a vertical mass flow superimposed on a Hadley circulation in a model
of a horizontal porous layer with inclined temperature gradient was first studied
by Nield (1998). In that work, it was reported that the vertical mass flow renders
the model less unstable and, at the onset of instability, renders the diameter of the
convection rolls smaller.

Until recently, in the analyses of the onset of convection in an extended horizontal
layer of a porous medium only the sinusoidal disturbances, i.e. normal modes, were
treated. A treatment of normal modes is indispensable in any stability analysis of an
extended medium because it first and foremost provides one with the critical values
of the corresponding control parameter. However, in order to obtain an information
concerning the evolution of localized perturbations one has to resort to a different tool,
specifically to a treatment of an initial-value problem formulated for the linearized
equations of motion and to an analysis of absolute and convective instabilities.

The theory of two-dimensional absolute and convective instabilities of extended
homogeneous flows has its origin in the physics literature, with the main ideas being
put forward as early as in 1949 by Landau and Lifshitz (see e.g. Landau & Lifshitz
1959). Since the early 1950s, starting with the work of Twiss (1951), the evolution
of two-dimensional linear wavepackets in spatially homogeneous extended flows was
an area of active interest in the plasma physics literature. The modern mathematical
foundations of the formalism of two-dimensional absolute and convective instabilities
of uniform flows were laid down by Briggs (1964). In fluid mechanics, the dynamics of
unstable linear wavepackets in homogeneous open flows have attracted considerable
attention since the early 1960s because of the significance of localized waves in the
transition to turbulence (see Gaster 1968, 1975; Gaster & Grant 1975; Drazin & Reid
1981 and the references therein).

In a recent work, Brevdo & Ruderman (2009a ,b) applied the formalism of absolute
and convective instabilities for studying the onset of convection in the model of a
two-dimensional flow in a horizontal extended porous layer with inclined temperature
gradient and vertical throughflow that was previously treated on stability of normal
modes by Nield (1998). In the work of Brevdo & Ruderman (2009a ,b), the stability
results of Nield (1998) were confirmed including the conjecture that among the two-
dimensional modes the longitudinal mode is favourable for the onset of convection
and that all the longitudinal modes are non-oscillatory, for all the values of the
parameters considered. This implies that in the two-dimensional approach, the onset
of convection occurs through absolute instability. Further, Brevdo & Ruderman
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(2009a ,b) treated transverse perturbations and discovered an absolute–convective
instability dichotomy in a set of exact solutions of the equations of motion at the
point of destabilization of such perturbations. The dependence of the dichotomy on
the horizontal Rayleigh number Rh and on the Péclet number Qv was investigated.

In the present paper, we address the nature of instability of three-dimensional
wavepackets in the model at the onset of convection by using the extension made by
Brevdo (1991) of the Briggs formalism of two-dimensional absolute and convective
instabilities to the three-dimensional case. We show that among the three-dimensional
normal modes, the longitudinal mode is still favourable and that, consequently, at the
onset of convection unstable three-dimensional wavepackets have the local structure
of a non-oscillatory longitudinal roll. However, in contrast with the two-dimensional
case, such wavepackets are absolutely unstable only in the cases in which Rh = 0 or
Qv = 0. When both Rh and Qv are different from zero, the instability at the onset of
convection is convective.

The paper is organized as follows. In § 2, we describe the model, give the governing
equations and present the base solution. Section 3 describes a linear initial-value
problem and a Laplace–Fourier-transformed problem and gives an expression for the
solution of the initial-value problem. In § 4, a procedure for analysing a marginally
unstable state on three-dimensional absolute and convective instabilities is described,
and a numerical treatment of the homogeneous boundary-value problem is outlined.
In § 5, the stability results are presented, and in § 6 conclusions are made.

2. Formulation
In our description of the model, we adopt the assumptions, notations and non-

dimensionalization of Nield (1998).
We treat a three-dimensional flow in a homogeneous saturated porous medium

that occupies an extended horizontal layer of height H. The origin of the Cartesian
coordinates is placed at the mid-height of the layer, with the z∗-axis pointing
vertically upwards and the x∗-axis pointing in the direction opposite the direction
of the applied horizontal temperature gradient β. Here and further in the text, the
superscript ‘*’ denotes dimensional quantities. The vertical temperature difference
across the boundaries is �T, and the vertical throughflow velocity is denoted by wv.

The flow in the porous medium is assumed to be governed by the Darcy law, and
the Oberbeck–Boussinesq approximation applies (see Bear 1988). The horizontal net
flow is supposed to be zero.

The governing equations for the flow read

∇∗ · v∗ = 0,

∇∗P ∗ +
μ

K
v∗ − ρ∗

f g = 0,

(ρc)m
∂T ∗

∂t∗ + (ρcp)f v∗ · ∇∗T ∗ = km∇∗2T ∗,

ρ∗
f = ρ0[1 − γ (T ∗ − T0)],

−∞ < x∗, y∗ < ∞, −H/2 < z∗ < H/2, t∗ > 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ∇ is the gradient operator; v∗ = (u∗, v∗, w∗)T , t∗, P ∗ and T ∗ denote the Darcy
velocity, time, pressure and temperature, respectively; the subscripts m, f and 0
refer to the porous medium, the fluid and the uniform reference state, respectively;
g =(0, 0, −g)T is the gravity acceleration vector; μ, ρ and c are viscosity, density
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Figure 1. Sketch of the model of a flow in a horizontal porous layer with scaled notations.

and specific heat, respectively; K is the permeability of the porous medium; km is
the effective thermal conductivity of the porous matrix; and γ denotes the thermal
expansion coefficient of the fluid. The boundary conditions are

w∗ = wv, T ∗ = T0 ∓ �T/2 − βx∗ at z∗ = ±H/2. (2.2)

Non-dimensionalized quantities are defined by

(x, y, z) = (x∗, y∗, z∗)/H, t = αmt∗/(AH 2), v = v∗H/αm,

P = K(P ∗ + ρ0gz∗)/(μαm), T = (T ∗ − T0)
ρ0gγKH

μαm

,

⎫⎬
⎭ (2.3)

where αm = km/(ρcp)f and A= (ρc)m/(ρcp)f . The non-dimensionalized governing
equations now read

∇ · v = 0,

∇P + v − T k = 0,

∂T

∂t
+ v · ∇T = ∇2T ,

−∞ < x, y < ∞, −1/2 < z < 1/2, t > 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

and the scaled boundary conditions are

w = Qv, T = ∓Rv/2 − Rhx at z = ±1/2, (2.5)

where k = (0, 0, 1)T , and the non-dimensional parameters in (2.5) are the vertical
Rayleigh number (Rv), the horizontal Rayleigh number (Rh) and the Péclet number
(Qv) given by a definition sketch of the model in non-dimensionalized notations is
shown in figure 1.

Rv =
ρ0gγKH�T

μαm

, Rh =
ρ0gγKH 2β

μαm

and Qv =
wvH

αm

. (2.6)

Problem (2.4)–(2.5) possesses a stationary flow solution with zero horizontal net
flow. The solution is given by

Us = Rhz, Ws = Qv, Vs = 0,

Ts =
R2

h

2Qv

(
z2 − 1

4

)
+

R2
h

Q2
v

z − Q2
vRv + R2

h

2Q2
v sinh(Qv/2)

[
eQvz − cosh(Qv/2)

]
− Rhx

⎫⎪⎬
⎪⎭ (2.7)

(see Nield 1998).
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3. Initial- and boundary-value problems
We linearize the equations of motion (2.4) around solution (2.7) and by assuming the

presence of momentum and energy sources and perturbations at the upper and lower
boundaries of the layer write an initial-value problem for the linearized equations as

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0,

∂p′

∂x
+ u′ = mx,

∂p′

∂y
+ v′ = my,

∂p′

∂z
+ w′ − θ ′ = mz,

∂θ ′

∂t
+ Us

∂θ ′

∂x
+ Qv

∂θ ′

∂z
− Rhu

′ +
dTs

dz
w′ − ∂2θ ′

∂x2
− ∂2θ ′

∂y2
− ∂2θ ′

∂z2
= e,

−1/2 < z < 1/2, −∞ < x, y < ∞, t > 0,

(v′, p′, θ ′)|t=0 = (v0, p0, θ0)(z, x, y),

(v′, p′, θ ′)
∣∣
z=−1/2

= (v1, p1, θ1)(x, y, t), (v′, p′, θ ′)
∣∣
z=1/2

= (v2, p2, θ2)(x, y, t).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

Here, the prime denotes perturbation quantities. Further in the text the prime will
be dropped for convenience. The functions mx = mx(z, x, y, t), my =my(z, x, y, t),
mz =mz(z, x, y, t), e = e(z, x, y, t), v1,2(x, y, t), p1,2(x, y, t) and θ1,2(x, y, t) are
supposed to have finite support in x, y and t, and the functions v0(z, x, y), p0(z, x, y)
and θ0(z, x, y) are supposed to have finite support in x and y.

Elimination of u, v, p and θ from the equations in (3.1) in a way similar to that
used by Brevdo & Ruderman (2009b) in the treatment of the two-dimensional case
results in an equation for the vertical perturbation velocity w,[(

∂

∂t
+ Us

∂

∂x
+ Qv

∂

∂z
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

)(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

+ Rh

∂2

∂x∂z
+

dTs

dz

(
∂2

∂x2
+

∂2

∂y2

)]
w(z, x, y, t) = E(z, x, y, t),

−1/2 < z < 1/2, −∞ < x, y < ∞, t > 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.2)

where E(z, x, y, t) being a linear combination of the source functions and their
derivatives is a function with finite support in x, y and t. The initial and boundary
conditions for w are

w|t=0 = w0(z, x, y),

w = f1(x, y, t),
∂2w

∂z2
= f3(x, y, t) at z = −1/2,

w = f2(x, y, t),
∂2w

∂z2
= f4(x, y, t) at z = 1/2.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.3)

The boundary conditions are derived from the equations and boundary conditions in
(3.1) (cf. Brevdo & Ruderman 2009b).

We operate on problem (3.2)–(3.3) with the Laplace transform in time and the
double Fourier transform in x and y defined as

L{w}(ω) = w̃(ω) =

∫ ∞

0

w(t)eiωtdt, w(t) =
1

2π

∫ iσ+∞

iσ−∞
w̃(ω)e−iωtdω (3.4)
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and

F {u}(k, l) = û(k, l) =

∫ ∞

−∞

∫ ∞

−∞
u(x, y)e−i(kx+ly) dx dy,

u(x, y) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
û(k, l)ei(kx+ly) dk dl,

⎫⎪⎪⎬
⎪⎪⎭ (3.5)

respectively. As a result we obtain the boundary-value problem for the transformed
function w(z, k, l, ω):[(

d2

dz2
− k2 − l2 + iω − ikUs − Qv

d

dz

)(
d2

dz2
− k2 − l2

)

− ikRh

d

dz
+ (k2 + l2)

dTs

dz

]
w(z, k, l, ω) = S(z, k, l, ω), −1/2 < z < 1/2,

w = f1(k, l, ω),
d2w

dz2
= f3(k, l, ω) at z = −1/2,

w = f2(k, l, ω),
d2w

dz2
= f4(k, l, ω) at z = 1/2.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

In (3.6) and further in the text the tilde and the hat are omitted for convenience. We
distinguish dependent variables from their transforms by the independent variables.
The function S(z, k, l, ω) in (3.6) is a linear combination of the transformed initial
and boundary conditions and their transformed derivatives.

Problem (3.6) is similar to problem (9) in Brevdo & Ruderman (2009b); its solution
is also similar to the solution of problem (9) of the same work. To avoid repetition
we omit the details of the solution and present here the final results. The solution of
problem (3.6) is given by

w(z, k, l, ω) =
T (z, k, l, ω)

eQvzD(k, l, ω)
, (3.7)

where T (z, k, l, ω) depends linearly on the functions S(z, k, l, ω) and fi(k, l, ω),
1 � i � 4, and D(k, l, ω) is the dispersion-relation function of the problem. The
construction of T (z, k, l, ω) and D(k, l, ω) can be made in a fashion similar to
that used by Brevdo & Ruderman (2009b) to construct the corresponding functions
T (z, k, ω) and D(k, ω), in the two-dimensional case. A triple (k, l, ω) satisfies the
dispersion relation,

D(k, l, ω) = 0, (3.8)

if and only if there exists a non-trivial solution of the homogeneous boundary-value
problem associated with problem (3.6):[(

d2

dz2
− k2 − l2 + iω − ikUs − Qv

d

dz

)(
d2

dz2
− k2 − l2

)

− ikRh

d

dz
+ (k2 + l2)

dTs

dz

]
w(z, k, l, ω) = 0, −1/2 < z < 1/2,

w = 0,
d2w

dz2
= 0 at z = ±1/2.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

The solution of the initial-value problem (3.2)–(3.3) is formally expressed by

w(z, x, y, t) =
1

8π3eQvz

∫ iσ+∞

iσ−∞

∫ ∞

−∞

∫ ∞

−∞

T (z, k, l, ω)

D(k, l, ω)
ei(kx+ly−ωt) dk dl dω. (3.10)
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Here σ is a real number that is greater than the maximum growth rate of the normal
modes, i.e.

σ > σm = max{Im ω | D(k, l, ω) = 0, Im k = 0, Im l = 0}. (3.11)

4. Treatment of absolute and convective instabilities
A formalism for treating three-dimensional absolute and convective instabilities

in a homogeneous state was developed by Brevdo (1991) by using the approach
developed by Briggs (1964) for the analysis of two-dimensional instabilities.
Determining the points that contribute to the instabilities in the three-dimensional
case generally requires solving a system of three equations of the form D = 0,

∂D/∂k+U∂D/∂ω = 0, ∂D/∂l+V ∂D/∂ω = 0, in the three-dimensional complex space
of (k, l, ω). Computationally, this might be a rather involved task, unless D(k, l, ω) is
given explicitly and has a simple form.

In the present case, however, we are interested only in the nature of instability
at the onset of convection, that is to say at a marginally supercritical value of the
control parameter. The control parameter in our treatment is the vertical Rayleigh
number, Rv. For analysing the nature of destabilization, it is sufficient to compute the
group velocity vector (Vgx , Vgy ) of the unstable wavepacket of a marginally unstable
state. The components of this vector are computed as

Vgx =
∂ωr (kc, lc)

∂k
and Vgy =

∂ωr (kc, lc)

∂l
, (4.1)

where (kc, lc) is the critical wavenumber vector (cf. Brevdo 1991). Here and further in
the text, the subscript r denotes the real part and the subscript i denotes the imaginary
part of a complex number. When (Vgx , Vgy ) = (0, 0) the base state is absolutely

unstable. In the case in which (Vgx , Vgy ) �= 0 and
√
V 2

gx + V 2
gy is large enough the flow

at the onset of convection is absolutely stable but convectively unstable. This is so
because, owing to continuity, the group velocity vector varies only slightly when the
marginally supercritical vertical Rayleigh number, Rv, is brought down towards its
critical value Rvc, whereas the set of unstable velocity vectors shrinks and eventually
reduces to the group velocity vector, which remains different from zero, as Rv reaches
Rvc. Our computations confirmed this assertion in all the cases considered.

For analysing the instabilities, we computed numerically the frequency, ω, as a
function of real k and l by discretizing problem (3.9) and finding all the eigenvalues
in ω of the resulting generalized algebraic eigenvalue problem. For the discretization,
a Chebyshev collocation method was used. The algebraic eigenvalue problem was
solved using the global solver DGVLCG of the International Mathematical and
Statistical Library. The procedure is described in detail by Brevdo & Ruderman
(2009a).

5. Stability results
To illustrate the three-dimensional stability computations, we present in figures 2–4

the graphs of the surfaces ωi = ωi(k, l) and ωr =ωr (k, l) and the contour lines of the
surface of ωi =ωi(k, l), respectively, for the marginally unstable mode, for the case
Rh = 30, Qv = 4. The results are shown in the first quadrant of the real (k, l)-plane.
The graphs in the whole real (k, l)-plane are obtained by symmetry, as ωi =ωi(k, l) is
an even function of real k and l, and ωr = ωr (k, l) is an odd function of real k and
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Figure 2. Growth rate ωi of the marginally unstable mode as a function of real k and l, for
Rh = 30, Qv =4. The marginally supercritical vertical Rayleigh number is Rvc = 83.786.
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Figure 3. Real part of the frequency ωr of the marginally unstable mode as a function of
real k and l. The parameters are as in figure 2.

an even function of real l. This can be seen by considering the complex conjugate of
problem (3.9).

In three tables, we present the computation results for various values of Rh and Qv.

In table 1, slightly supercritical values of the vertical Rayleigh number, Rvc, are given.
In each case, the flow is unstable for the value of Rvc shown in that table, and it is
stable for the value of Rv obtained from Rvc by reducing by 1 the last significant digit
in the number giving Rvc. Thus, in the Rh = 30, Qv = 4 case illustrated in figures 2–4
the base state is unstable for Rv =83.786, and it is stable for Rv =83.785. The results
given in tables 2 and 3 are computed to the accuracy of one half of the decimal
position, 0.5 × 10−p, that follows the last decimal position shown in each number.
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Rh = 0 10 20 30 40 50 60

Qv = 0 39.479 42.008 49.549 61.957 78.967 100.12 124.48
1 40.876 43.404 50.941 63.336 80.317 101.41 125.65
2 45.078 47.604 55.128 67.487 84.381 105.29 129.19
3 52.069 54.589 62.088 74.382 91.128 111.74 135.05
4 61.668 64.172 71.617 83.786 100.28 120.39 142.53
5 73.415 75.880 83.189 95.078 111.03 129.93 148.98
6 86.620 88.994 96.008 107.30 122.09 138.83 155.56
7 100.59 102.81 109.33 119.68 132.93 147.74 162.90
8 114.84 116.86 122.77 132.06 143.85 157.13 171.00

Table 1. Values of the marginally supercritical vertical Rayleigh number, Rvc.

0 1 2 3 4 5

0

1

2

3

4

5

–0.1
–1
–3
–6
–9

–12

k

l

Figure 4. Contour lines of ωi = ωi(k, l) for the marginally unstable mode. The parameters
are as in figure 2.

Table 2 shows the values of the critical wavenumber vector (kc, lc). The critical
wavenumber vector in all the cases has zero k-component, implying that among
the three-dimensional normal modes the longitudinal two-dimensional mode is
favourable. An illustration of the finding that in the (k, l)-space incipient instability
occurs on the l-axis is presented in figure 4. In this figure, six contour lines of the
surface ωi = ωi(k, l) whose graph is shown in figure 2 are plotted, and it is seen that
the function ωi =ωi(k, l) attains its maximum, which in this case is marginally greater
than zero, on the l-axis, at lc = 3.85.

The real frequency of the critical mode is zero, in all the cases treated. This is
illustrated in figure 3, where it is seen that ωr (0, l) = 0, for all l. Computations of
the critical values of the vertical Rayleigh number and of normal modes in the
two-dimensional case were reported by Nield (1998), for the cases considered in the
present paper, with an exception of the cases Rh = 50, 60. Our results for Rvc and kc
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Rh = 0 10 20 30 40 50 60

Qv = 0 (0, 3.14) (0, 3.14) (0, 3.15) (0, 3.16) (0, 3.22) (0, 3.34) (0, 3.67)
1 (0, 3.18) (0, 3.18) (0, 3.18) (0, 3.20) (0, 3.25) (0, 3.38) (0, 3.71)
2 (0, 3.29) (0, 3.29) (0, 3.30) (0, 3.31) (0, 3.37) (0, 3.50) (0, 3.83)
3 (0, 3.49) (0, 3.49) (0, 3.50) (0, 3.52) (0, 3.58) (0, 3.73) (0, 4.11)
4 (0, 3.79) (0, 3.79) (0, 3.81) (0, 3.85) (0, 3.95) (0, 4.19) (0, 5.12)
5 (0, 4.20) (0, 4.21) (0, 4.25) (0, 4.35) (0, 4.58) (0, 5.22) (0, 6.68)
6 (0, 4.73) (0, 4.76) (0, 4.85) (0, 5.06) (0, 5.52) (0, 6.40) (0, 7.46)
7 (0, 5.38) (0, 5.42) (0, 5.58) (0, 5.89) (0, 6.45) (0, 7.24) (0, 8.10)
8 (0, 6.09) (0, 6.15) (0, 6.34) (0, 6.70) (0, 7.25) (0, 7.95) (0, 8.70)

Table 2. Values of the critical wavenumber vector, (kc, lc).

Rh = 0 10 20 30 40 50 60

Qv = 0 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
1 (0, 0) (0.0938, 0) (0.178, 0) (0.245, 0) (0.280, 0) (0.268, 0) (0.201, 0)
2 (0, 0) (0.218, 0) (0.424, 0) (0.594, 0) (0.724, 0) (0.776, 0) (0.780, 0)
3 (0, 0) (0.401, 0) (0.795, 0) (1.16, 0) (1.50, 0) (1.83, 0) (2.41, 0)
4 (0, 0) (0.666, 0) (1.35, 0) (2.06, 0) (2.87, 0) (4.05, 0) (8.74, 0)
5 (0, 0) (1.02, 0) (2.09, 0) (3.35, 0) (5.09, 0) (8.62, 0) (15.7, 0)
6 (0, 0) (1.43, 0) (2.99, 0) (4.93, 0) (7.79, 0) (12.2, 0) (17.4, 0)
7 (0, 0) (1.84, 0) (3.88, 0) (6.38, 0) (9.70, 0) (13.9, 0) (18.4, 0)
8 (0, 0) (2.21, 0) (4.62, 0) (7.45, 0) (10.9, 0) (14.9, 0) (19.1, 0)

Table 3. Values of the group velocity vector of the three-dimensional wavepacket at the
onset of convection.

compare well with the results of Nield (1998) and support his assertion that the onset
of convection has a non-oscillatory character.

Table 3 shows the values of the group velocity vector, (Vgx , Vgy ), at the onset of
convection. From the results of the table it is seen that in the cases in which Rh = 0
or Qv =0 the destabilization has the character of absolute instability. In all the
cases considered when Rh �= 0 and Qv �=0, at the onset of convection the instability is
convective and the wavepacket moves in the x-direction. Thus, the growing disturbance
moving along the most unstable ray, {x = x0 + Vgx t, y = y0 + Vgy t, t → ∞}, has
locally the form of a non-oscillatory longitudinal roll that propagates in the positive
x-direction which is opposite the direction of the applied horizontal temperature
gradient, that is to say in the direction along the axis of the roll. As seen from the
results shown in table 2, at the onset of convection, the diameter dc = π/lc of the
cross-section of the roll is generally a decreasing function of Rh and of Qv. The speed
of propagation of the wavepacket increases with Qv. Also, greater applied horizontal
temperature gradient renders the speed of propagation generally greater.

To conclude this section we recall that ωi(k, l) is an even function of real k and l

and that ωr (k, l) is an odd function of real k and an even function of real l. Therefore,
at the onset of convection ωi(k, l) attains its maximum both at (0, lc) and at (0, −lc),
where the values of lc are given in table 2. From the above property of ωr (k, l)
it follows that the group velocity vector of the marginally unstable wavepacket
computed at the contributing point (0, −lc) is equal to the group velocity vector
computed at the contributing point (0, lc) (see (4.1)). This means that only one
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unstable wavepacket moving in the positive x-direction is present at the onset of
instability in the convectively unstable cases considered.

6. Conclusions
In this paper, we treated three-dimensional instabilities at the onset of convection in

a model of a flow in a porous medium with inclined temperature gradient and vertical
throughflow that was studied previously on instability of the two-dimensional longit-
udinal normal modes by Nield (1998) and on absolute and convective instabilities of
the two-dimensional transverse perturbations by Brevdo & Ruderman (2009a ,b). It
was found that among the three-dimensional normal modes the longitudinal mode is
the favoured one, and all the longitudinal modes are non-oscillatory, extending the
two-dimensional results of Nield (1998) to the three-dimensional case.

Our analysis discovered an absolute–convective instability dichotomy at the onset of
three-dimensional convection in a set of base states given by exact analytic solutions
of the equations of motion in the model. The dichotomy depends on whether the
product RhQv is nil or not. When RhQv =0 the destabilization is through absolute
instability; otherwise it is through convective instability. The growing wavepacket has
at its peak locally the form of a non-oscillatory longitudinal roll that propagates
in the direction opposite the applied horizontal temperature gradient, which is the
positive x-direction, i.e. parallel to the axis of the roll. At the onset of convection, the
diameter of the roll, dc = π/lc, is generally a decreasing function of Rh and Qv. In all
the cases treated, it holds that dc � 1.

In an analysis of two-dimensional absolute and convective instabilities at the onset
of convection in the model, Brevdo & Ruderman (2009a ,b) pointed out that two-
dimensional longitudinal wavepackets are absolutely unstable, for all the values of
Rh and Qv, because all the two-dimensional longitudinal normal modes are non-
oscillatory. This observation is in contrast with the results of the present paper
that on the one hand show that in the three-dimensional dynamics as in the two-
dimensional one, the longitudinal mode is favourable, but on the other hand reveal
that at the onset of convection the three-dimensional growing localized perturbations
having locally the form of non-oscillatory longitudinal rolls can be either absolutely
or convectively unstable depending on whether RhQv = 0 or not.

From the results of table 3 we see that in all the cases the group velocity vector of the
emerging marginally unstable three-dimensional wavepacket has zero y-component.
This is well in accordance with the fact that the longitudinal modes, i.e. the x-
independent two-dimensional modes, are favourable for the onset of three-dimensional
convection. In a two-dimensional treatment of the longitudinal perturbations, the
emerging wavepacket is absolutely unstable for all the values of Rh and Qv considered;
i.e. it has zero group velocity, which in such a treatment is the velocity in the y-
direction. In a three-dimensional analysis, the convective instability at the onset of
convection found to exist when RhQv �=0 is due entirely to the three-dimensional
effect. Specifically, since in the destabilization in the three-dimensional case the
longitudinal modes are favoured, an added third dimension in a three-dimensional
treatment compared with a two-dimensional treatment of longitudinal perturbations,
i.e. the direction x added to the directions y and z in the analysis of wavepackets, does
not change the component of the group velocity in the y-direction of the wavepacket,
leaving it equal to the group velocity of a two-dimensional longitudinal mode, that
is to say equal to zero. However, the component of the group velocity in the added
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x-direction is not zero when RhQv �= 0, meaning absolute stability but convective
instability at the onset of convection.

An absolute–convective instability dichotomy in a set of exact analytic solutions
of the equations of motion in the model was discovered by Brevdo & Ruderman
(2009a ,b) for two-dimensional transverse disturbances. The dichotomy found in that
two-dimensional analysis as well as the one in the present three-dimensional treatment
can hopefully be used to explore experimentally and in a numerical nonlinear study the
implications of two essentially different forms of linear destabilization, absolute and
convective, for the emergence of fully developed nonlinear regimes. Such explorations
can be facilitated by the fact that the dichotomies were found to exist in a set of
exact analytic solutions of the equations of motion in a relatively simple model.
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